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Abstract 

In this paper a new fuzzy adaptive cancellation control scheme is presented, The 
basic part of the fuzzy adaptive cancellation controller is the inverse fuzzy model, 
which is given in the form of a fuzzy relational matrix. The fuzzy adaptive controller 
has been evaluated by implementation on heat-exchanger plant, which exhibits non- 
linear and time-varying behaviour. To realize on-line identification, a recursive fuzzy 
identification algorithm based on the relational matrix has been developed. This iden- 
tification algorithm offers very fast convergence of estimated parameters and the ad- 
vantage of implicitly estimated operating point. It is shown that for mutable processes 
the adaptive fuzzy cancellation controller is superior to the classical model-reference 
adaptive control. 

1 Introduction 

When the process parameters of a controlled process either are poorly known or vary dur- 
ing operation, the use of adaptive control technique is generally necessary to obtain a high- 
performance control system. Many solutions have been proposed in order to make control 
systems adaptive. One of those solutions, model-reference adaptive system, evolved in the 
late 50s. The main innovation of this system is the presence of a reference model which 
specifies the desired dynamics of the closed-loop system. The reference model can also be 
implicitly included in the closed-loop system as a cancellation principle. The cancellation 
principle of model-reference control has been used to develop a fuzzy adaptive system. 

In this paper the fuzzy adaptive cancellation controller which is based on the inverse fuzzy 
relational model is investigated. The adaptive scheme is tested on a real mutable process 
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with single dynamics, i.e. a highly nonlinear heat-exchanger pilot plant whose parameters 
vary during the operation time. The nature of the process requires an adaptive scheme. 
The fuzzy adaptive scheme is based on the recursive fuzzy identification of the inverse 
matrix model. The algorithm requires on-line identification developed and discussed in 
this paper. The fuzzy relational matrix model is obtained on the basis of the fuzzified 
process input and output variables. The relational matrix model actually represents the 
relationship between those fuzzified variables and is presented with the fuzzy relational 
matrix. 

The paper is organized as follows: first the algorithm of fuzzy identification is developed 
and its recursive form is presented. Also some problems relating to recursive identifica- 
tion are discussed. In section 2 the fuzzy cancellation adaptive controller is developed 
and discussed. In section 3 the application of adaptive approache on heat-exchanger is 
presented. 

2 Fuzzy Identification 

In this section Takagi-Sugeno fuzzy models or systems are discused. Suppose the rule 
base of a fuzzy system is as follows 

Ri  : I F  xl  is A i  and x2 is B i  T H E N  y = f i ( x l , x 2 )  i = 1 , . . . N  (1) 

where xl and x2 are input variables of the fuzzy system, y is an output variable, Ai, Bi 
are fuzzy sets characterized by their membership functions. The IF-parts (antecedents) 
of the rules describe fuzzy regions in the space of input variables and the T H E N - p a r t s  
(consequent) are functions of the inputs, usually defined as 

f i ( x l , x 2 )  = aixi + bix2 + ri (2) 

where ai, bi are the consequent parameters. For ai = bi = 0 the model becomes a 
Takagi-Sugeno fuzzy model of the zeroth order. Such a very simplified fuzzy model can 
be regarded as a collection of several linear models applied locally in the fuzzy regions 
defined by the rule antecedents. Smoth transition from one subspace to another is assured 
by the overlapping of the fuzzy regions. 

Fuzzy identification based on fuzzy Sugeno model of the zeroth order is concerned with 
fuzzy rules of the following form 

R~ : I F  xl  is A i  and x2 is B~ T H E N  y = ri i = 1 , . . . N  (3) 

This is a singleton fuzzy model where fi  is a constant. 

Rule-premises are formulated as fuzzy AND relations on the cartesian product set X = 
X1 x X2, and several rules are connected by logical OR. Fuzzification of a crisp input 
value xl produces a column fuzzy set 

~ ( X l )  : [~AI (X l ) ,~A2(X l ) , . . . ~Am(X l ) ]  T (4) 



930 

and similarly for a crisp value x2. The degrees of fulfillment for all possible AND com- 
binations of  rule premises are calculated and written into a matrix S. If the algebraic 
product is used as AND operator, this matrix can be directly obtained by the multiplica- 
tion: 

S = U l  ~ ]~T = ]'$1 " ] "tT (5 )  

where/~1(m x 1)and/z2(n × 1)are the input fuzzy sets. 

A crisp output value y is computed by simplified algorithm for singletons as a weighted 
mean value (Center of Singeltons): 

m 
Ein--1 E j = I  8ijrij 

Y ~ n m (6) 

The dimension of the matrix 5;(m x n), which actually represents the structure of  the 
model, depends on the dimensions of the input fuzzy sets/.L 1 ( m  X 1) and/z 2 (n x 1). The 
fuzzy relational matrix R consists of elements rij. 

In order to apply a standard least-squares method to estimate the parameters rij, the vec- 
tors s and r are formed from S and R,  respectively 

8 = (811 8 1 2 . . . 8 1 n . . . 8 m l  8 m 2 . . . 8 m n )  T 

r = ( ru  r 1 2 . . . r l n . . . r m l  r m 2 . . . r m n )  T (7) 

Using these vectors, equation 6 is rewritten as 

8 r r 8 r ( x l , z 2 ) .  

Y -  8T---~ = 8T(xl ,X2) • I (8) 

where I defines the vector of ones of the same dimension (n.  m x 1) as s and r .  The ele- 
ments rij are estimated on the basis of the observations which are obtained in equidistant 
time intervals by measuring the process input and output. A system of linear equations is 
constructed from the above equations for the time points t = t l ,  t = t 2 , . . . ,  t = t g  

s T (tl) s T (h ) "  I y  (h )  

• r = ( 9 )  : 

s T (tN) S T (tN)" I y  (tN) 

The system is of  the form: 
if ' -  r = f~ (10) 

with a known nonsquare matrix ff~ and a known vector Ft. The solution of this overdeter- 
mined system is obtained by taking the pseudo-inverse as an optimal solution of vector r 
in a least squares sense: 

7" = (~I /T~T/ ) - - I~T~ '~  (11) 

where @ stands for fuzzified data matrix with dimension N x (n .m)  and f t  has dimension 
N x l .  
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In the case of  more than two input variables (MISO multi-input-single-output fuzzy sys- 
tem), matrices S and R are no longer matrices, but both become a tensor, defined on the 
total product space of the inputs. 

When the observations are obtained sequentially, the recursive equation can be derived. 
The procedure is known as recursive identification. The acquisition of new data at certain 
time instants gives information on the current behaviour of the process. Each observation, 
each pair of input-output data, contributes a new equation which gives a lot of information 
on the process parameters. The whole algorithm should be calculated in the time between 
two samples. This restriction can be a serious problem. The identification procedure in 
recursive form saves some computing time and is suitable when the process parameters 
are time-varying. When the process parameters are changing during the operation, it is 
necessary to eliminate the influence of old data. This can be done using a method with 
exponential weighting. The old data are forgotten exponentially because the new samples 
give more adequate information on the current behaviour of the process. The method of 
recursive fuzzy identification with exponential weighting is based on the loss function 

N 8T(k)  i" k 2 
J(rc) = Z AN-k(Y(k) -- s(k)I  ~( )) ' 

k=l 
(12) 

where y(k) is the current value of process output, sT(k) is the fuzzy data vector in trans- 
posed form, ~c(k) is the current value of the estimated fuzzy relational vector, and A is 
the forgetting factor. The proper value of the forgetting factor is chosen between 0.95 and 
0.98 as proposed by Isermann, Lachmann and Matko [6]. 

Optimizing the loss function (12) and expressing the normalized fuzzy data vector as 

s n ( k ) -  sT(k) (13) 
s(k)x' 

the recursive fuzzy identification with exponential weighting is obtained in the following 
form 

/'c(k + 1) = ~c(k) + K(k)(y(k + 1) - SYn(k)i'c(k)) (14) 

g ( k )  = P(k)s~(k + 1)[A + sTn'(k + 1)P(k )Sn (k ) ]  -1 (15) 

P(k + 1) = A [ I  - g(k ) sT(k  + 1)]P(k) .  (16) 

Eq.(14) expresses the new estimate i'c(k + 1) of the process parameters as a correction 
of the previous estimate i'c(k). The correction is proportional to the error between the 
observed value of y at time k + 1 and the prediction of y(k + 1) which is based on 
preceding estimates of parameters. 

The initial value of the matrix is chosen as the covariance of initial values of the estimated 
fuzzy relational vector parameters rc as follows 

P ( O )  = cov(¢'c - r ) .  (17) 
When there is no a priori information on the initial values of estimated parameters, the 
initial values of the matrix P(O) have to be chosen sufficiently large 

P(0)  = c~I, ~ > >  1, (18) 
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and the initial values of the estimated fuzzy relational vector parameters are set to 

~c(0) = O. (19) 

The application of recursive fuzzy identification requires continuous monitoring and su- 
pervision of several parameters. The identification algorithm can be started in a closed 
loop after specifying free parameters and setting the initial conditions for parameter esti- 
mation. These problems are connected with the start-up procedure or pre-identification. 
Another problem is the persistent excitation in the closed loop. All these problems are 
discussed in the section on supervision and coordination. 

3 Fuzzy Adaptive Control 

Fuzzy models give some advantage in comparison to conventional models, and this jus- 
tifies the introduction of the fuzzy adaptive system. The fuzzy adaptive system consists 
of recursive identification of the fuzzy model and the fuzzy controller. In our case, the 
fuzzy model of the process is given in the form of the relational matrix representation of 
the process inverse. This model is used by the cancellation fuzzy controller. In the next 
two subsections, the relational matrix identification and the fuzzy cancellation controller 
will be given. 

3.1 The fuzzy adaptive cancellation controller based on fuzzy rela- 
tional matrix 

The conventional cancellation control is used for tracking control problems and the 
model-reference control. The basic idea of the cancellation control is to design a con- 
troller which ensures the desired closed-loop response. Basically this is the controller 
which can be encountered in model-reference adaptive control. The closed-loop transfer 
function, consisting of a conventional cancellation controller and the process, is supposed 
to be equal to the prescribed reference model 

am(z)- Y(z) a (z)ap(z) 
W ( z )  - 1 + Gr(z )Gp(z ) '  (20) 

where Gm (z) is the reference model, Gr (z) is the transfer function of controller in the 
direct loop and Gp (z) is the transfer function of the process. To obtain the closed-loop re- 
sponse defined with the reference model as in the Eq.(20), the controller transfer function 
is equal to 

1 Gin(z) 
Gr(z)  = Gp(z) " 1 -  Gin(z)" (21) 

The goal of cancellation controllers is to cancel the process dynamic with the cancellation 
part of the controller and to introduce the reference dynamic. Mathematically, this can be 
described as follows 

1 
G~omp = Gp(z)" (22) 
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This equation expresses the cancellation part and the following equation the noncancella- 
tion part 

B, (z)z 
Gnoncomp(Z) - 1 - Gm(z)  - A,~(z) - Bm(Z)Z -d (23) 

where Bm(Z)Z -d  is the numerator and Am(z )  the denominator of the reference-model 
transfer function. 

The cancellation characteristic involves some constraints. The first problem is the realiza- 
tion of a controller connected with the time delay of the process. The transport time delay 
of the process could not be compensated for and should be incorporated into the closed- 
loop system as the delay of the reference model. So the delay of the reference-model 
should be chosen equal to or greater than the delay of the controlled process. A detailed 
explanation is found in [6] and [7]. Other constraints are related to the cancellation of 
zeros and poles which lie outside the unit circle. The cancellation implies that all poles 
and zeros must lie inside the unit circle, and so the cancellation controller in its origi- 
nal form is applicable only to stable minimum-phase processes. This drawback can be 
eliminated by appropriate measures. The cancellation can be avoided if the desired poly- 
nomial Bm (z) includes all zeros of the process outside the unit circle. The polynomial 
Am(z )  - Bm (z)z  -d  must include all unstable poles of the process. 

The fuzzy cancellation controller is designed with the same considerations as the conven- 
tional cancellation controller. It also consists of a cancellation and a noncancellation part. 
The cancellation part is in the case of fuzzy cancellation controllers realized as the fuzzy 
inverse model of the process. The fuzzy inverse model of a mutable single dynamic pro- 
cess has two inputs y(k)  and y(k  - 1) and one output u,~(k). The fuzzy inverse model is 
obtained using the input error model shown in Fig. 1 and described by the fuzzy relational 
equation 

P,ant t y<k  T ..... 
! 

Ly<k) 1 
uAk) 

Figure 1: The input error model 

Uk+l = Yk o Yk-] o P'-c. (24) 

The noncancellation part of the controller is the same as for the conventional cancellation 
controller 

G~x(z )  Gr , (z)  
- ( 2 5 )  

E ( z )  1 - 

where E(z )  is the Z-transform of the error signal e(k) and Uauz (z) is the Z-transform 
of auxiliary control signal Uauz (k), which is the input of the inverse fuzzy model. The 
fuzzy data matrix of the controller's inverse model is composed of the actual value of 
the auxiliary control signal Uauz (k) and of the one time sample delayed auxiliary control 
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signal Uauz (k - 1). The output of the inverse model is the current control signal u(k). 
Fig. 2 shows the fuzzy cancellation controller in the closed loop. 

The relation between the auxiliary control signal and the control signal is described by 
the following equation 

u(k) = 8T(lz(Uaux(k))' ].z(Uaux(k -- 1)))" ~c(k) (26) 

where 8T( lz (Uaux(k) ) ,  I~(Uauz(k - 1))) is the fuzzy data vector and Pc is the current 
estimate of the fuzzy relational vector of the inverse process. 

The described algorithm of the fuzzy cancellation adaptive controller exhibits some ad- 
vantages over the conventional adaptive technique. These advantages are based on fuzzy 
identification which enables the identification of nonlinear process dynamic and also ira- 
plicitly describes the operating point of the process. 

Fuzzy Controller ~ 

Figure 2: The scheme of the fuzzy cancellation adaptive system 

3.2 Supervision and coordination 

The implementation of fuzzy adaptive control requires an additional supervision and co- 
ordination system to eliminate and avoid all expected or unexpected changes in the op- 
erating conditions of the controlled process in the adaptive control loop. These changes 
may result in unacceptable or unstable control behaviour of the fuzzy adaptive system. 
Therefore a continuous monitoring and supervision of the fuzzy adaptive control loop 
functions are required, 

A very important part of supervision is the P-controller which controls the difference be- 
tween the variable on the inverse model input Ua,~,(k) and process output y(k). In the 
ideal case, both variables should be equal. When the controller action of the implemented 
fuzzy cancellation controller is too weak or too strong, an additional supervision con- 
troller is needed. The input into the P-supervisory controller is the difference between 
the variables y(k) and uaux(k) and the output is up(k), which together with the output 
from the fuzzy cancellation controller uf  (k) forms the control signal u(k) of the process. 
Fig. 3 shows the fuzzy cancellation controller with the P-supervisory controller in the 
closed loop. 
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Figure 3: The scheme of the fuzzy cancellation adaptive system with supervision system 
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Figure 4: The heat exchanger pilot plant 

4 Adaptive Control of the Heat Exchanger Pilot Plant 

The adaptive approach discussed has been implemented in a real temperature plant, which 
consists of a plate heat exchanger, through which hot water from an electrically heated 
reservoir is continuously circulated in the counter-current flow to cold process fluid (cold 
water). The thermocouples are located in the inlet and outlet flows of the exchanger; 
both flow rates can be visually monitored. Power to the heater may be controlled by time 
proportioning control using the external control loop. The flow of the heating fluid can 
be controlled by the proportional motor driven valve. A schematic diagram of the plant 
is shown in Figure 4. The temperature T1 (z, t) is measured on temperature sensor TC4, 
T2 (z, t) measured on temperature sensor TC 1 and Ts (z, t) represent the temperatures of 
the cold water, heating water and the iron wall respectively, vl (t) measured on flow sensor 
F1 and v2(t) measured on flow sensor F2, are velocities of cold and heating water, kl and 
k2 constants which include the heat transfer coefficients and the physical dimensions of 
the heat exchanger. 

The input of heat-exchanger model is the current velocity of the heating water v2(t) and 
outlet temperature of the cold water T1 is defined as the output. In order to obtain the 
simple model of the heat exchanger, theoretical modelling would be very difficult because 
of the unknown nonlinear behaviour. Furthermore, the heat exchanger is just one part of 
the plant, so the sensors and the actuators should also be modelled. The motor driven 
valve exhibit a strong nonlinear and time-varying behaviour. 
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Figure 5: Velocity of cold water in outlet flow 

System modelling based on conservational laws and first principles would be a very dif- 
ficult, expensive and time consuming task. Instead, fuzzy identification of the process 
is used. Although the process is very complex, it could be presented as a model with 
approximately first order dynamics with small time delay, with significantly time varying 
parameters and nonlinearities according to the operating point. 

During the experiments, some values of the physical parameters (velocity vl of the outlet 
and the temperature T2 at the inlet of the exchanger) which are supposed to be constant 
were changing. The time course of the changing outlet flow vl is presented in Figure 5. 
The inlet temperature of the heated water T2 is controled using a simple on-off controller 
and vary between 60°C and 65°C. These variations have a great influence on the gain and 
on the dominant time constant of the process. The period of the first 2500s has been used 
for the pre-identification in the closed-loop. In this periode the robust PI-controller has 
been used to control the inlet temperature T2. Afterwards, the fuzzy adaptive controller 
was switched on. The output of the closed-loop y (t) and the reference model output ym (t) 
are shown in Figure 6. In this Figure only the periode of fuzzy adaptive contol is shown. 
In spite of very changing condition (changing outlet velocity vl and inlet temperature T1) 
and nonlinear system dynamics, the closed-loop response obtained using proposed fuzzy 
adaptive algorithm exhibits a very good performance in both modes, in model following 
mode and disturbance rejection mode. 

5 Conclusion 

In this paper the fuzzy adaptive cancellation control scheme is presented. The develop- 
ment of a new fuzzy adaptive scheme was motivated by the unsatisfactory results obtained 
using conventional adaptive techniques. Regarding the real-time experiments realized on 
the heat-exchanger plant, it can be seen that the novel algorithm introduces faster conver- 
gence and better performance in the presence of nonlinearity and unmeasured dynamics. 
The main disadvantages of this algorithm are stability analysis, which is still unsolved, 
and the very complicated relational matrix in the case of a higher order system. The 



937 

~ - o . 4  ] 

i5: -121 il;o- 1 
,1 , ' ° - ~ -  - " ~  . . . . . . . . .  ' ' 9000  

C~nt  ~ (  ~lgna* u of  ~ ~ t o r  a ~ v e n  w l v *  
20 , , 

. . . . . . . . .  ~ d . T  - - o o  
t [~1 

Figure 6: Plant output temperature and model-reference temperature 

proposed approach seems to be usable for time-varying or nonlinear systems with sim- 
ple dynamics. In such cases, the proposed algorithm gives some advantages over other 
conventional model-reference adaptive techniques. 
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